
DeepClean: Data Cleaning via Question Asking

Xinyang Zhang

Lehigh University

xzic15@lehigh.edu

Yujie Ji

Lehigh University

yuj216@lehigh.edu

Chanh Nguyen

Lehigh University

cpn217@lehigh.edu

Ting Wang

Lehigh University

inbox.ting@gmail.com

Abstract—As one critical task in the data analysis pipeline, data
cleaning is notoriously human labor-intensive and error-prone.
Knowledge base-assisted data cleaning has proved a powerful tool
for finding and fixing data defects; however, its applicability is
inevitably bounded by the natural limitations of knowledge bases.
Meanwhile, although a vast number of knowledge sources exist
in the form of free-text corpora (e.g., Wikipedia), transforming
them into formats usable by existing data cleaning tools can be
prohibitively costly and error-prone, if not at all impossible.

Here, we present DEEPCLEAN, the first end-to-end data clean-
ing framework powered by free-text knowledge sources. At a
high level, DEEPCLEAN leverages a knowledge source through
its question-answering (QA) interface and achieves high-quality
cleaning via iterative question asking. Specifically, DEEPCLEAN

detects and repairs data defects in three stages: (i) Pattern ex-
traction - it automatically discovers the semantic types of the data
attributes as well as their correlations; (ii) Question generation
- it translates each data tuple into a minimal set of validation
questions; (iii) Completion and repair - by checking the answers
returned by the knowledge source against the data values, it
identifies erroneous cases and suggests possible fixes. Through
extensive empirical studies, we demonstrate that DEEPCLEAN is
applicable to a range of domains, and can effectively repair a
variety of data defects, highlighting data cleaning powered by
free-text knowledge sources as a promising direction for future
research.

I. INTRODUCTION

Real-world datasets often contain various types of defects

(e.g., inaccurate, missing, or duplicate values). Data cleaning,

the process of detecting and fixing data defects, is one critical

yet still overlooked task in the data analysis pipeline. Indeed,

it was estimated that on average data scientists spend over 50

percent of their time on massaging and cleaning unruly data,

before it can be explored for useful insights [1].

Recently, knowledge base-assisted data cleaning (e.g., [2])

has emerged as a promising approach for such tasks. Intu-

itively, it performs cleaning by aligning the (dirty) data with

publicly available knowledge bases (e.g., Freebase [3], DBPe-

dia [4], and Yago [5]). Compared with prior art (e.g., [6]–[10]),

it significantly improves the repair accuracy and reduces the

requirement for external resources (e.g., domain expertise [11]

and master data [12]). Yet, the applicability of this approach

is inevitably bounded by the natural limitations of knowledge

bases, such as: (i) their fixed schema are not expressive to

describe many complicated relationships, (ii) they are sparsely

populated with respect to many domains, and (iii) they often

contain stale information, due to infrequent update cycles.

Meanwhile, a vast number of knowledge sources exist

in the form of free-text encyclopedias (e.g., Wikipedia), of

a1 a2 a3 a4 a5

t1 M. Curie Poland Nobel Prize in Physics 1911 U of Paris

t2 M. Planck Nobel Prize in Physics 1918 U of Munich

t3 A. Einstein Germany Nobel Prize in Physics 1921 ETH

t4 Banting United States Nobel Prize in  Medicine 1923 U of Toronto

t5 P. Dirac England Nobel Prize in Physics U of Bristol

Figure 1: A relational table T of Nobel Laureates, with

missing and erroneous values highlighted.

which content quality and format is strictly governed by

detailed guidelines. Moreover, such knowledge sources are

constantly maintained and updated. Compared with traditional

knowledge bases, free-text encyclopedias often provide larger

coverage, richer textual representation, and more accurate in-

formation [13]. However, while knowledge bases are designed

for machines to process, free-text encyclopedias are designed

for humans to read. Transforming them into formats directly

usable for existing data cleaning tools can be prohibitively

costly and error-prone, if not at all impossible.

Interestingly, to date a variety of question-answering (QA)

modules (e.g., [14]–[16]) have been built for free-text ency-

clopedias to automatically answer natural language questions

(e.g., “What Nobel Prize was awarded to Marie Curie in
1911?”). Built using deep neural networks (e.g., LSTM)

and trained using large question-answer corpora (e.g., the

SQuAD dataset [17]), these modules provide QA capabilities

comparable to human level comprehension1. Thus, in this

paper, we pose the following question:

Can we achieve high-quality data cleaning by lever-
aging a free-text encyclopedia via its QA interface?

Challenges. While conceptually simple, achieving this goal

represents a set of non-trivial challenges.

First, translating the data cleaning task into a sequence

of question asking and answer checking is challenging. It

requires comprehensive understanding of the data semantics

(e.g., attribute types and correlations). Yet, in realistic settings,

we often lack reliable, meaningful labeling of the data.

Second, multiple types of defects (e.g., missing and er-

roneous values) are often intertwined in the data. As the

data attributes are interdependent, repairing one value often

depends on the presence and correctness of other values. This

1As of January 22 2018, the R-NET+ [18] model has outperformed humans
on the SQuAD task in terms of ExactMatch score (http://stanford-qa.com/).
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Figure 2: Illustration of DEEPCLEAN framework.

leads to the challenging problem of scheduling the validation

order for different values.

Last but not least, to scale up to large number of attributes

and tuples, it is desirable to minimize the number of questions

issued to the QA interface.

Our Work. Here, we present the design, implementation,

and evaluation of DEEPCLEAN, the first end-to-end data clean-

ing framework powered by free-text knowledge sources. At a

high level, DEEPCLEAN achieves high-quality data cleaning

in three major stages, as illustrated in Figure 2.

(i) Pattern Extraction - We assume a “cold-start” setting

wherein the data semantics is unknown a priori. In this

stage, DEEPCLEAN automatically discovers the attribute types

and correlations by bridging the data with the knowledge

source through its QA interface, without requiring any manual

annotations.

(i) Question Generation - Based on the discovered data

semantics, DEEPCLEAN defines a set of question templates,

each designed to verify one attribute. Using these templates,

DEEPCLEAN is able to generate a set of validation questions

for each data tuple.

Example 1: In Figure 1, to verify the third attribute of

the first tuple in the table (i.e., “Nobel Prize in Physics”),

DEEPCLEAN generates the question as: “Which Nobel Prize
for Laureate M. Curie and Year 1911?”.

(iii) Completion and Repair - Finally, DEEPCLEAN per-

forms cleaning by iteratively issuing validation questions to

the QA interface, checking returned answers against data

values, identifying defects, and suggesting possible fixes. To

maximize the cleaning effectiveness and to minimize the

QA overhead, DEEPCLEAN carefully schedules the execution

order of validation questions.

Example 2: To the question in Example 1, the QA

interface returns the answer of “she won the 1911

Nobel Prize in Chemistry”, with the most likely answer un-

derlined. Given the conflict between this answer and t1[a3],
an error is pinpointed and the possible repair of “Nobel Prize
in Chemistry” is suggested.

We prototype DEEPCLEAN and evaluate its efficacy using

a variety of real datasets. It is shown that DEEPCLEAN is

applicable to a range of domains, and can effectively identify

and fix a variety of data defects (including missing and

erroneous values), thanks to the extensive coverage and rich

contextual evidence bestowed by free-text knowledge sources.

Contributions: The main contributions of this paper can

be summarized as follows.

• We envision the paradigm of data cleaning by exploiting

vastly available free-text knowledge sources through QA

interfaces, and present DEEPCLEAN, the first end-to-end

design that realizes this paradigm.

• We prototype DEEPCLEAN and propose a suite of opti-

mization strategies that significantly improve its usability

and applicability in realistic settings.

• We conduct extensive empirical evaluation on the effi-

cacy of DEEPCLEAN using a variety of real datasets.

The results highlight data cleaning powered by free-text

knowledge sources as a promising direction for further

research.

It is worth emphasizing that we are not arguing to replace

existing data cleaning tools with DEEPCLEAN. Indeed, as

shown in our empirical evaluation, DEEPCLEAN well comple-

ments existing tools, especially in repairing values that exist

in complicated interdependencies with other values. Thus,

integrating DEEPCLEAN with these tools is a future research

topic with strong practical relevance.
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Laureate
a1

a2

a3

a4

a5

Country

University

Year

Nobel Prize

Figure 3: The table pattern of T in Figure 1.

II. OVERVIEW OF DEEPCLEAN

In this section, we motivate the overall design of DEEP-

CLEAN.

A. Preliminaries

We first introduce a set of fundamental concepts and as-

sumptions used throughout the paper.

Data Table Without loss of generality, we assume that

the (dirty) data is stored in a tabular form, which is one

of the most widely used data formats (e.g., SQL databases,

Web tables, spreadsheets). In general, a table T describes one

type of entities (e.g., “Nobel Laureate”); each row (tuple) of

T represents one instance of that entity type (e.g., “Albert
Einstein”), and each column of T represents one attribute of

that entity type (e.g., “Alma mater”). A schematic table is

shown in Figure 1. For simplicity, we assume a single table

T in the data, while the discussion can be generalized to the

case of multiple tables.

Let A be the set of attributes in T . Given a tuple t ∈ T ,

its value with respect to an attribute a ∈ A is called a cell,
denoted by t[a].

Table Pattern. We assume a cold-start scenario in which

T ’s semantics is unknown a priori. There are two types of

semantics that DEEPCLEAN is designed to uncover: (i) the

semantic type tp(a) of each attribute a ∈ A, which is defined

as its categorization in the free-text knowledge source, and (ii)

a’s correlation with other attributes A\ {a}, which is defined

as the subset of A\{a}, cr(a), that are highly correlated with

a.

Example 3: In Figure 1, tp(a1) = “Laureate”, tp(a2) =

“Nobel Prize”, and tp(a3) = “Year”; cr(a3) = {a1, a4},

because the type of Nobel Prize (a3) is highly correlated with

both the laureate (a1) and the award year (a3).

We refer to this collection of type and correlation informa-

tion G = {tp(a), cr(a)}a∈A as T ’s table pattern. For example,

the pattern of the table in Figure 1 is illustrated in Figure 3.

Free-Text Knowledge Source. In this paper, we use

Wikipedia as a concrete instance of free-text knowledge

sources, due to its popularity and public nature.

Wikipedia is an online encyclopedia, of which content

quality and format is strictly governed by detailed guidelines.

Unlike traditional knowledge bases, Wikipedia articles are

Field Definition
title unique name
text detailed description

category categorization
page-link hyperlinks to other pages

Table I. Fields of a Wikipedia page used in DEEPCLEAN.

constantly updated, making it an ideal knowledge source for

data cleaning tasks.

Wikipedia is organized as a repository of pages: each page

describes one distinct topic (e.g., a person, a place, an orga-

nization), while pages may be linked through page-links [19].

In addition to topic pages, Wikipedia also maintains “redirect”

pages, which list alternative representations of given topics

(e.g., “Marie Curie” versus “Marie Sklodowska-Curie”), and

“disambiguation” pages, which list pages of topics possibly

referred to by ambiguous terms (e.g., Marie Curie may refer

to either a physicist or a Polish film).

To organize the vast number of pages, Wikipedia also main-

tains a hierarchical category system, in which each category

groups together pages on similar topics. Note that each page

is possibly associated with multiple categories. The fields of

a Wikipedia page used in DEEPCLEAN are summarized in

Table I.

Question Answering. To make better use of free-text

knowledge sources, a plethora of question-answering (QA)

modules have been built to automatically answer natural

language questions posed by users (e.g., “Which year was
Albert Einstein awarded the Nobel Prize?”). For Wikipedia, a

variety of QA modules have been proposed (e.g., [14]–[16]).

Built upon deep neural networks (e.g., bidirectional LSTM)

and trained using large question-answer corpora (e.g., the

SQuAD dataset [17]), these modules provide QA capabilities

comparable to human level comprehension.

Despite their significant variations, all the QA modules

provide two fundamental functions: (i) page retriever - given

a retrieval query q (e.g., “M. Curie”), it extracts a set of

Wikipedia pages most relevant to q; (ii) page reader - given a

natural language question q (e.g., “Which year was M. Curie
awarded the Nobel Prize?”, it predicts the span (i.e., a small

piece of text within a Wikipedia page) in which the answer

to q most likely lies. For example, to the question above, the

QA module may predict the span of “she won the 1911 Nobel
Prize in Chemistry”.

In implementing DEEPCLEAN, we treat the QA module as

a black box. Thus, the concrete QA module is immaterial,

provided that it offers accurate prediction for answer spans. In

the following, we instantiate the QA module with the DrQA

model, which achieves F1 score of 79.353 on the SQuAD

dataset [14].

B. DeepClean in A Nutshell

Intuitively, DEEPCLEAN performs high-quality data clean-

ing by translates this task into a sequence of question asking

and answer checking via the QA interface of the knowledge
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source. As illustrated in Figure 2, the high-level design of

DEEPCLEAN consists of three major stages, namely, pattern

extraction, question generation, and completion and repair.

Pattern Extraction. To make DEEPCLEAN applicable to

realistic settings, we assume that T ’s semantics (attribute

types and correlations) is completely unknown. In this stage,

DEEPCLEAN automatically discovers T ’s table pattern G
by bridging T with the knowledge source through its QA

interface. Specifically, to identify attribute types, we propose

an instance-based “bootstrapping” approach; to find attribute

correlations, we apply a weakly supervised reward-guided

search.

Question Generation. According to T ’s table pattern G,

DEEPCLEAN defines a set of question templates, each de-

signed to verify one attribute. Note that one attribute may be

associated with multiple question templates, which enables (i)

higher chance to find relevant information in the knowledge

source and (ii) more flexibility in scheduling the question

execution order in the next stage. Based on such question

templates, for each tuple, DEEPCLEAN generates a set of

validation questions to verify each of its cells.

Completion and Repair. In this stage, DEEPCLEAN com-

pares answers returned by the knowledge source against actual

cell values. If conflicts are found, DEEPCLEAN pinpoints

errors and further suggest possible repairs (e.g., the most likely

answer found in the knowledge source).

To maximize the repair effectiveness and to minimize

the number of questions issued to the knowledge source,

DEEPCLEAN carefully schedules the question execution order

by prioritizing questions whose answers maximally reduce a

tuple’s overall uncertainty.

Note that in addition to suggesting possible repairs, DEEP-

CLEAN also provides the contexts within which the repairs are

found (i.e., the answer spans). Such contextual information can

be valuable for the data analysts to make final repair decisions.

In § III, § IV, and § V, we elaborate on each of DEEP-

CLEAN’s core components.

III. PATTERN EXTRACTION

We assume a “cold-start” scenario in which T ’s semantics

is either unavailable or unusable (an example is shown in Fig-

ure 1), which is especially true for data constructed from Web

resources where cryptic naming conventions are often used.

In the stage of pattern extraction, DEEPCLEAN automatically

discovers T ’s semantics by bridging it with knowledge source

through its QA interface.

Following existing work (e.g., [2], [7], [8]), our running

assumption is as follow: in realistic settings, the number of

erroneous tuples is relatively small, compared with the total

number of tuples in T ; thus, the aggregated information across

a majority of the tuples tend to be accurate.

We divide pattern extraction into two subtasks, discovering

attribute types and discovering attribute correlations, detailed

in § III-A and § III-B respectively.

A. Discovering Attribute Types

Let A denote T ’s attributes. We define A’s semantic

types using Wikipedia categories (e.g., “Nobel Prize”). To

discover A’s semantic types, we adopt an instance-based

“bootstrapping” approach, which does not require any manual

annotations. Intuitively, for each attribute a ∈ A, we find the

set of Wikipedia pages P(a) most relevant to a and infer

a’s Wikipedia categories by aggregating the categories of the

pages in P(a).

Disambiguation. For each cell value t[a] of tuple t ∈ T ,

we fetch the set of Wikipedia pages P(t[a]) related to t[a]
through the page retriever of the QA interface (§ II-A). We

then classify t[a] into three possible classes.

• Topic value, which corresponds to a specific topics in

Wikipedia (e.g., “Nobel Prize in Physics”). In this case,

P(t[a]) contains one unique page as t[a]’s topic page,

denoted by pta.

• Ambiguous value, which potentially refers to multiple

topics in Wikipedia (e.g., “Banting”). In this case, P(t[a])
contains more than one page. To find the exact one pointed

to by t[a], a disambiguation process is necessary.

• Literal value, which is neither a topic nor an ambiguous

value. In this case, P(t[a]) is empty. Literal values tend to

appear in the text of other topic pages.

For an ambiguous value t[a], we perform two disambigua-

tion operations to identify its exact topic page among the set

of candidates P(t[a]). Recall that each Wikipedia page p is

associated with a set of fields (see Table I). Below we use C(p)
and L(p) to denote p’s categories and page-links respectively.

[Attribute-Level Filtering] In this operation, we examine the

cell values {t′[a]}t′ of other tuples t′ ∈ T . Let T ′ represent

the subset of tuples such that for each t′ ∈ T ′, t′[a] is a topic

value. We then identify the set of categories shared by their

corresponding topic pages, denoted by
⋂

t′∈T ′ C(pt′a ). Among

P(t[a]), we search for the pages whose categories maximally

match
⋂

t′∈T ′ C(pt′a ), as measured by their attribute-level

scores:

a-score(p) =

∣∣∣(⋂t′∈T ′ C(pt′a )
)⋂ C(p)

∣∣∣∣∣⋂
t′∈T ′ C(pt′a )

∣∣ (1)

where p is a page in P(t[a]).
Example 4: In Figure 1, as a surname, t4[a1] (“Banting”)

is an ambiguous value, possibly referring to multiple no-

table figures. Yet, all of t1[a1], t2[a1], t3[a1], and t5[a1] are

topic values, which share the category of “Nobel Laureates”.

Among t4[a1]’s candidate pages, only the page of “Frederick
Banting” matches this category, which we consider as t4[a1]’s
topic page.

[Tuple-Level Filtering] In this operation, to disambiguate

t[a], we examine t’s values with respect to attributes other

than a. Let A′ be the subset of attributes such that t[a′] is a

topic value for a′ ∈ A′ and L(pta′) be the set of pages pointed

by some page-links in pta′ . Then among P(t[a]), we search for
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Algorithm 1: Discovering Attribute Types

Input: relevant Wikipedia pages {P(t[a])}t∈T ,a∈A
Output: A’s semantic types

// disambiguation
1 Lqueued ← {t[a]}t∈T ,a∈A;

2 while not converged do
3 for t[a] ∈ Lqueued do
4 for each p ∈ P(t[a]) do

// attribute- and
tuple-filtering

5 compute a-score(p) and t-score(p);
6 if a-score(p) = 0 or t-score(p) = 0 then
7 remove p from P(t[a]);

8 if pta is found then remove t[a] from Lqueued;

// categorization
9 for each a ∈ A do

10 Ta ← {t ∈ T |pta is identified};

11 if |Ta|
|T | > 0.5 then

12 for t ∈ Ta do populate C(pta) ;

13 pick c∗ = argmaxc tf-idf(c, a);

14 else pick c∗ = the majority NER type of {t[a]}t∈T ;

the pages that frequently appear in the sets {L(pta′)}a′∈A′ , as

measured by their tuple-level scores:

t-score(p) =

∑
a′∈A′ IL(pt

a′ )(p)

|A′| (2)

where IΩ(x) is an indicator function, which returns 1 if x ∈ Ω
and 0 otherwise.

Example 5: In Figure 1, t3[a5] is an ambiguous value (e.g.,

it may potentially refer to Ethiopia), while t3[a1] is a topic

value. Among t3[a5]’s candidate pages, only the page of “ETH
Zurich” appears in L(pt3a5

), which is thus considered as t3[a5]’s
topic page.

In practice, we interleave attribute-level filtering with tuple-

level filtering to maximize the effectiveness of disambiguation.

Intuitively, as more topic values are uncovered, there emerge

more opportunities to apply the attribute- or tuple-level filter-

ing.

Categorization. After maximally reducing the number of

ambiguous values, we proceed to discovering the attribute

types. Given attribute a, let Ta be the subset of tuples such that

for t ∈ Ta, its topic page pta is identified. We find a’s semantic

type as the optimal category by aggregating the categories of

all the pages {pta}t∈Ta .

Recall that the categories in Wikipedia form a hierarchy,

while each page is likely associated with multiple categories.

To select the optimal category, we preform the following

procedure.

(1) For each t ∈ Ta, we first populate its category set

C(pta) by including all their ancestor categories in the hierarchy

(e.g., “Nobel Laureates” as an ancestor category of “Nobel
Laureates in Physics”);

(2) We then compute the term frequency-inverse document

frequency score tf-idf(c, a) = tf(c, a) · idf(c) for each category

c. The term frequency tf(c, a) measures how frequently c
appears in {C(pta)}t∈Ta , while the inverse document frequency

idf(c) measures how important c is. Specifically, we define

tf(c, a) and idf(c) as follows:

tf(c, a) =
∑

t∈Ta
IC(pt

a)
(c)

|Ta|
idf(c) = log

ntotal

nc

where ntotal is the total number of pages in Wikipedia and nc

is the number of pages associated with c.

(3) Finally, we pick the category c∗ with the highest tf-idf

score as a’s semantic type.

In the case that most of {t[a]}t∈T are literal values, we

resort to named entity recognition (NER) categories [20]. To

detect t[a]’s NER category, we search for t[a] in the topic

pages of other cell values {t[a′]}a′ �=a and apply the NER

extractor of the Stanford OpenIE library [21]. We define a’s

semantic type as the majority NER category among {t[a]}t∈T .

Putting everything together, Algorithm 1 sketches the pro-

cedure of discovering A’s semantic types.

B. Discovering Attribute Correlations

As will be shown in § IV, to generate questions effective

for data cleaning, it is crucial to understand the correlations

between different attributes. For given attribute a∗ ∈ A, we

are interested in finding a minimal subset of A\{a∗}, denoted

by cr(a∗), such that for tuple t ∈ T , t[cr(a∗)] (i.e., t’s values

projected on cr(a∗)) and t[a∗] appear in the same semantic

context (e.g., the same sentence) with high probability. We

refer to cr(a∗) as a∗’s correlation set. Further, by aggregating

such correlation sets, we group A into a set of “cliques”,

similar to undirected graphical models.

Example 6: In Figure 1, a3 represents the type of Nobel

Prize, which is highly correlated with a1 (“Laureate”) and a4
(“Year”), while a1 or a4 alone is insufficient to determine a3
(e.g., M. Curie won the Nobel Prize in Physics in 1903 and the

Nobel Prize in Chemistry in 2011). Thus, cr(a3) = {a1, a4}.

Reward-Guided Search. To find the optimal cr(a∗) for

given attribute a∗, we apply a weakly supervised reward-

guided search. We model the search as a sequence of actions

of adding one attribute a time from A\{a} to a set Aa∗ (which

is initialized as an empty set), and define the state space to

be all the possible assignments of Aa∗ (i.e., all the subsets

of A \ {a}). Each action moves the search from one state to

another.

The value function measures Aa∗ ’s quality, which is defined

in a recursive form:{
v(Aa∗

⋃{a}) = v(Aa∗) + π(Aa∗ , a)
v(∅) = 0

(3)

where a represents the attribute added to Aa and the policy
function π(Aa∗ , a) scores the action of adding a to Aa∗ . Note

that we disallow adding duplicate attributes to Aa∗ .
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We use a beam search strategy to find a state with the

highest value, which represents the optimal assignment of

cra∗.

Implementation. Next we detail the implementation of this

search strategy.

[Naı̈ve Version] We begin with the basic implementation.

Intuitively, we measure Aa∗ ’s quality with respect to a∗ as

follows: for tuple t ∈ T , we generate a question asking for

t[a∗] conditioned on t[Aa∗ ] (the details of question generation

are deferred to § IV); if the QA interface is able to find the

correct answer with high probability, we consider that a∗ is

highly correlated with Aa∗ .

Thus we measure the value function v(Aa∗) as the overall

accuracy of retrieving correct answers for t[a∗] given t[Aa∗ ]
for each t ∈ T , while the policy function π(Aa∗ , a) is trivially

the change of accuracy due to adding a to Aa∗ . Using the

beam search strategy, the search for optimal Aa∗ is reduced

to a sequence of question asking and answer checking.

Despite its simplicity, this naı̈ve approach cannot scale up

to large numbers of attributes or tuples. First, the question

processing in Wikipedia is costly, due to the use of multiple-

layer recurrent neural networks. Second, the attribute order in

the question may significantly affect the QA effectiveness [14],

which implies the necessity of trying all the permutations of

Aa∗ to find the optimal attribute order.

[Optimized Version] To overcome this scalability issue, we

use a learning approach to model the policy function.

To this end, we parameterize π(Aa∗ , a) as a bidirectional

long short-term memory network (BiLSTM) [22] followed by

two fully connected layers, which outputs a scalar value as the

predicted retrieval accuracy. The input to this neural network

is the sequence concatenated by the features vectors of a∗, a,

and Aa∗ (wherein an arbitrary order is given for the attributes

in Aa∗ ). For each attribute, we define its feature vector as the

Glove word embeddings [23] of its semantic type.

To train π(Aa∗ , a), we collect a set of training data by

running the Naı̈ve estimation approach for a set of randomly

sampled {a∗, a,Aa∗} in which the attributes in Aa∗ are

randomly ordered. We then train π(Aa∗ , a) using the Adam

optimizer [24].

IV. QUESTION GENERATION

Next we show how to generate validation questions to verify

each value of T .

Let G = {tp(a), cr(a)}a denote T ’s table pattern. For

given tuple t and attribute a∗, we verify the value of t[a∗]
by generating one or more validation questions (which is

dependent on the number of correlation sets found for a∗).

For simplicity of discussion, here we assume cr(a∗) contains

only one correlation set.

In our empirical evaluation, we find the following question

template particularly effective for extracting relevant answers.

The question template comprises a header and a body:

question(a∗, cr(a∗), t) → header(a∗) FOR body(cr(a∗), t)

Specifically, the header header(a∗) is generated from a∗

using the following rule:

header(a∗) → Which tp(a∗) (tp(a∗) ∈ Wikipedia)
| Where (tp(a∗) = LOCATION)
| When (tp(a∗) = TIME)
| Who (tp(a∗) = PERSON)
| What (tp(a∗) = MISC)

Intuitively, if a∗’s semantic type tp(a∗) is described by

Wikipedia categories, we use “which tp(a∗)” as the question

header; if tp(a∗) is described by NER categories [20], we use

the corresponding question word directly.

The question body body(cr(a∗)) is generated from cr(a∗)
and t in a recursive manner:

body(cr(a∗), t) → tp(a) t[a] AND body(cr(a∗) \ {a})

Note that here we assume the attribute order in cr(a∗) is

already optimized as in § III-B.

Example 7: In Figure 1, with a∗ = a3, cr(a∗) = {a1, a4},

and t = t1, following the rules above, DEEPCLEAN generates

the question of “Which Nobel Prize for Laureate M. Curie
and Year 1911”.

V. COMPLETION AND REPAIR

In the stage, DEEPCLEAN performs effective data cleaning

by iteratively (i) submitting validation questions to the QA

interface, (ii) comparing returned answers against data values,

and (iii) identifying defects and suggesting possible fixes.

In DEEPCLEAN, we consider two types of defects, missing

values and erroneous values, which often co-exist in the data.

Because fixing a given attribute value depends on the existence

and correctness of other attribute values, it is crucial to

carefully schedule the execution order of validation questions.

A Unified Framework: Without loss of generality, consider

a given tuple t ∈ T that contains both missing and erroneous

values. Note that while missing values are obvious, erroneous

values need to be detected. We present a labeling-based algo-

rithm that fills t’s missing values (completion) and corrects t’s
erroneous values (repair) in a unified framework, as sketched

in Algorithm 2.

Specifically, when attribute a∗’s correlation set cr(a∗) is

empty, there is no rule available to fix t[a∗], we thus assume

t[a∗] is either correct by default if t[a∗] is present, or unfixable

if t[a∗] is missing (line 3-6).

We fix the remaining attribute values in an iterative manner.

if for attribute a∗, the values of {t[a]}a∈cr(a∗) are all fixed, we

consider t[a∗] as ready, and submit question(a∗, cr(a∗), t) to

the QA interface and fix t[a∗] (line 15 - 16).

There may exist deadlock cases wherein two (or multiple)

unfixed attributes appear in each others’ correlation sets, while

all the attribute values of their dependency sets are present

(no missing values). In this case, we pick t[a∗] with the least

uncertainty in its correlation set (i.e., most of {t[a]}a∈cr(a∗)
are fixed) as the next value to be fixed (line 10 - 12).
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Algorithm 2: Fixing Data Defects

Input: tuple t, table pattern G = {tp(a), cr(a)}a
Output: fixed tuple t”

1 Lqueued ← A, Lfixed ← ∅;

2 for a∗ ∈ Lqueued do
3 if cr(a∗) = ∅ then
4 if t[a∗] is missing then report t[a∗] as

“unfixable”;

5 else add a to Lfixed;

6 remove a from Lqueued;

7 while Lqueued �= ∅ do
8 Lready ← ∅;

// t[a∗] is ready to be fixed
9 if ∃a∗ ∈ Lqueued, cr(a

∗)
⋂Lfixed = cr(a∗) then add

a∗ to Lready ;

// resolve deadlock
10 else if attributes {a} are in deadlock then
11 pick a∗ = argmaxa

|cr(a)⋂Lfixed|
|cr(a)| ;

12 add a∗ to Lready;

13 if Lready = ∅ then break;

14 for a∗ ∈ Lready do
15 execute question(a∗, cr(a∗), t) to fix t[a∗];
16 move a∗ from Lqueued to Lfixed;

17 for a ∈ Lqueued do report t[a∗] as “unfixable”;

In addition to suggesting possible fixes, DEEPCLEAN also

presents the answer spans from Wikipedia as contextual infor-

mation to the data analysts, who may then make final repair

decisions.

VI. EMPIRICAL STUDY

In this section, we empirically evaluate DEEPCLEAN using

real-life tabular data. The experiments are designed along

three dimensions: (i) the efficacy of pattern extraction, (ii) the

efficacy of completion and repair, and (iii) case studies.

A. Experimental Setting

We first describe the setting of our experiments.

Free-text knowledge source. We use the SQL dump of

the English Wikipedia as of 11/03/2017 as the free-text

knowledge source, and adopt the DrQA model [14] as its

question-answering (QA) interface, which together constitute

DEEPCLEAN’s backend, as shown in Figure 2.

Datasets. As currently there still lack benchmark datasets

for data cleaning tasks, we collect four datasets from Web

for evaluation: WikiTables,2 DBPedia,3 WebTables, and

RelationalTables.

• WikiTables includes tables extracted from Wikipedia

pages.

2http://downey-n1.cs.northwestern.edu/public/
3http://web.informatik.uni-mannheim.de/DBpediaAsTables/

Dataset # Tables # Tuples # Attributes
WikiTables 19 668 54

DBPedia 10 417 24
WebTables 26 1,730 71

RelationalTables 2 9,949 5

Table II. Statistics of the datasets used in the experiments.

• DBPedia contains tables from the DBPedia knowledge

base.

• WebTables is a set of tables scraped from Web pages.

• RelationalTables contains two tables: Soccer4 describes

soccer players, their clubs, and nationalities; University5

describes US universities and their addresses.

The statistics of the datasets are summarized in Table II.

The attribute types (in terms of Wikipedia categories) and

attribute correlations in all the tables are manually annotated,

which we use as ground truth to measure DEEPCLEAN’s

performance.

All the algorithms are implemented in Python.

B. Experimental Results

Next we present the results of our empirical study. Due to

space limitations. More details are referred to our technical

report [25].

Pattern Extraction. Recall that in the pattern extraction

stage, DEEPCLEAN automatically discovers the data semantics

(including attribute types and correlations). For each attribute,

we compare its attribute type and correlation set found by

DEEPCLEAN against the human-annotated ground truth. As in

realistic environments, we face possibly dirty data. To simulate

such settings, we inject errors into the data by randomly

selecting 10% cells in all the tables and modifying their values.

Dataset Type Correlation
WikiTables 0.84 0.81

DBPedia 0.88 0.81
WebTables 0.77 1.0

RelationalTables 0.69 0.84

Table III. DEEPCLEAN’s accuracy of extracting attribute types

and correlations (error rate = 10%).

Table III summarizes DEEPCLEAN’s performance of ex-

tracting attribute types and correlations. Across all the datasets,

DEEPCLEAN achieves reliable accuracy. For example, in the

WebTables dataset, DEEPCLEAN successfully discovers cor-

rect correlations for all the attributes.

To assess the impact of data quality, we increase the error

rate to 20% and report DEEPCLEAN’s accuracy in Table IV.

As expected, the accuracy of type extraction decreases mod-

estly. Counterintuitively, the accuracy of correlation extraction

increases slightly! This phenomenon may be explained as

follows: DEEPCLEAN is designed to find highly correlated

4https://www.premierleague.com/
5https://ope.ed.gov/accreditation/
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Dataset Type Correlation
WikiTables 0.72 0.83

DBPedia 0.76 0.92
WebTables 0.68 1.0

RelationalTables 0.60 0.84

Table IV. DEEPCLEAN’s accuracy of extracting attribute types

and correlations (error rate = 20%).
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Figure 4: DEEPCLEAN’s accuracy of filling missing values

versus the setting of k.

attributes; the random errors reduce spurious correlations and

make true correlations more evident.

Note that as we define its attribute types in terms of

Wikipedia categories, it is difficult to directly compare DEEP-

CLEAN with other existing methods (e.g., [2], [26], [27]),

which all require knowledge bases to define attribute types.

Completion and Repair. We differentiate two types of

data cleaning tasks. In the completion task, DEEPCLEAN fills

missing values using answered returned by the knowledge

source. In the repair task, DEEPCLEAN first detects erroneous

values and then replace them with returned answers. Next we

report DEEPCLEAN’s performance in both tasks.

[Completion Tasks] To evaluate DEEPCLEAN’s performance

in the completion task. We randomly select and delete 10%

cells in all the tables; that is, each cell has 10% chance of

being removed. We then estimate DEEPCLEAN’s accuracy in

terms of finding right answers for these missing values.

accuracy =
# correctly filled values

# missing values

Dataset Mean Std
WikiTables 0.71 ± 0.11

DBPedia 0.68 ± 0.15
WebTables 0.83 ± 0.12

RelationalTables 0.88 ± 0.01

Table V. DEEPCLEAN’s accuracy of filling missing values.

Table V summarizes the results. Observe that across all the

datasets, DEEPCLEAN achieves accuracy above 0.68 in filling

missing cells. Interestingly, DEEPCLEAN does not achieve the

highest accuracy in the WikiTables dataset, which comprises

tables extracted from Wikipedia pages. This may be explained

by that DEEPCLEAN interacts with Wikipedia solely through

its QA interface, which mainly relies on text content and

ignores other structured information (e.g., tables) in Wikipedia

pages.

In addition, we examine the impact of the parameter k on

DEEPCLEAN’s accuracy. Recall that k controls the number

of candidate values suggested by DEEPCLEAN. We count

a completion operation as correct only if the ground-truth

value appears in the top k candidate values. Figure 4 shows

DEEPCLEAN’s completion accuracy as k varies from 1 to 10.

It is noticed that in general DEEPCLEAN’s performance is

insensitive to the setting of k and the correct value appears

in the top candidate values with high probability. In the

following, we set k = 5 by default.

[Repair Tasks] As the repair task consists of two parts,

detecting erroneous values and correcting them, in which the

correction step is similar to the completion task. Therefore

here we focus on DEEPCLEAN’s performance of detecting

erroneous values. To inject errors into the data, we randomly

select and modify 10% cells in all the tables.

Recall that DEEPCLEAN verifies cell values via iterative

question asking and reports suspicious cases if answers conflict

with cell values. We measure DEEPCLEAN’s accuracy in terms

of precision and recall:

precision =
# correct detection

# all detection
recall =

# correct detection

# all errors

Dataset Precision Recall
WikiTables 0.82 0.82

DBPedia 0.47 0.73
WebTables 0.70 1.0

RelationalTables 0.60 1.0

Table VI. DEEPCLEAN’s accuracy of detecting the erroneous

cases.

Dataset Precision Recall
WikiTables 1.0 0.30
WebTables 1.0 0.46

Table VII. KATARA’s accuracy of repairing the erroneous

cases.

Table VI summarizes DEEPCLEAN’s accuracy of detecting

erroneous values. It is observed that DEEPCLEAN enjoys high

detection accuracy in most of the cases, which especially

manifests in its recall. For comparison purpose, Table VII lists

the performance of KATARA [2],6 a knowledge base-assisted

data cleaning method, on similar datasets. Interestingly, the

comparison shows the strengths and limitations of the two

classes of approaches. Thanks to the broader coverage of free-

text encyclopedias, DEEPCLEAN is able to detect a larger

number of erroneous cases. Meanwhile, knowledge bases offer

6As KATARA requires crowdsourcing, Table VII copies the results reported
in [2].
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a1

a2

Film
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a4
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(Helen Morgan)

Director

(Agathiyan)

(1997)

Film

(Kadhal Kottai)

Language

(Tamil)

Table 1 Table 2

Figure 5: Patterns of two sample tables (the values in the

parenthesis represent one data instance).

more strict knowledge representation, which enables KATARA

to pinpoint a subset of erroneous cases with higher precision.

This observation implies the possible synergistic effects of in-

tegrating DEEPCLEAN with knowledge base-assisted methods

to deliver more effective data cleaning tools.

Case Studies. Next we compare two concrete cases, in one

case DEEPCLEAN achieves high repair accuracy while in the

other it does not perform well, and discuss its strengths and

limitations.

We pick two tables from the WebTables dataset, Table 1 -

American Films and Actresses and Table 2 - National Film
Awards, in which DEEPCLEAN’s accuracy of filling missing

values is 0.33 and 0.81 respectively. Figure 5 shows the table

patterns found by DEEPCLEAN for the two tables.

Notice that Table 1 describes the simple relationships be-

tween actresses and their films. However, since such relation-

ships are often non-bijectional (often n-to-n), it is challenging

for DEEPCLEAN to extract relevant answers to verify given

data. In contrast, Table 2 describes the complicated relation-

ships of film directors, award winning films, award years, and

film languages. For example, the award year is correlated with

both the director and the film, while the director or the film

alone is insufficient to determine the award year. Given such

multiple constraints, DEEPCLEAN is able to perform effective

question asking by using such constraints as rich contexts.

We can therefore conclude that DEEPCLEAN is especially

suitable for dataset with complicated inter-attribute dependen-

cies.

VII. RELATED WORK

In this section, we review three categories of related work,

namely, data cleaning, machine comprehension of text, and

Wikipedia-based knowledge discovery.

In response to the practical need of automated and depend-

able data cleaning, a plethora of solutions have been proposed.

One line of work solely relies on internal information of the

datasets, such as integrity constraints [6]–[8], [28], [29] and

statistics [10], [30], [31]. Despite their generality, such best-

effort solutions often fail to precisely identify and correct

errors, due to the limitations of available information. Another

line of work exploits external information, such as master

data [12], domain expertise [11], [32], crowdsourcing [9],

and knowledge bases [2]. Some recent work [33] further

considers the populating tabular data with the assistance of

such knowledge sources. However, such resources are often

scarce, expensive to employ, or limited by incompleteness and

fixed schema. In comparison, free-text knowledge sources are

much more abundant, expressive, and updated, making them

ideal backends for data cleaning tasks.

Machine comprehension of text is the problem of answering

questions after reading short texts. Thanks to advances in

deep neural network models (e.g., attention- and memory-

augmented networks [34], [35]) and newly available datasets

(e.g., CNN/Daily Mail [36] and SQuAD [17]), machine com-

prehension models have achieved capabilities comparable to

humans on some QA tasks [18], opening the opportunity of

building user-friendly QA interfaces for free-text knowledge

sources [14]–[16]. To our best knowledge, this work is the

first to exploit such QA interfaces for data cleaning.

Finally, besides serving as knowledge sources for QA,

Wikipedia is also widely used in other knowledge discov-

ery tasks, such as document clustering [37], named entity

disambiguation [38], and information diffusion tracking [39].

However, to our best knowledge, this work is among the

first to perform high-quality data cleaning based on Wikipedia

through its question-answering interface.

VIII. CONCLUSION AND FUTURE WORK

We propose DEEPCLEAN, the first end-to-end data cleaning

framework powered by free-text knowledge sources. Designed

for a cold-start setting wherein the data semantics is unknown

a priori, DEEPCLEAN automatically discovers the attribute

types and correlations by bridging the data with the knowledge

source through its question-answering interface. Each data

tuple is validated and repaired by issuing a minimal set of

questions to the knowledge source and checking the returned

answers against the tuple values. Extensive experiments on

real datasets demonstrate that DEEPCLEAN is applicable to a

range of domains and can effectively repair a variety of data

defects.

This work also opens several avenues for further inves-

tigation. First, one possible direction is to enhance DEEP-

CLEAN by incorporating resources beyond free-text knowl-

edge sources (e.g., crowdsourcing and knowledge bases).

Second, it would be interesting to assess the benefits of using

multiple free-text knowledge sources to repair one dataset,

especially if some of the knowledge sources contain conflict-

ing information. Finally, another line of work is to extend

the DEEPCLEAN framework to repair non-tabular data (e.g.,

graphs and key-value pairs).
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